Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 3393, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296125

RESUMO

Detection of secretory antibodies in the airway is highly desirable when evaluating mucosal protection by vaccines against a respiratory virus, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that intranasal delivery of an attenuated SARS-CoV-2 (Nsp1-K164A/H165A) induces both mucosal and systemic IgA and IgG in male Syrian hamsters. Interestingly, either direct intranasal immunization or airborne transmission-mediated delivery of Nsp1-K164A/H165A in Syrian hamsters offers protection against heterologous challenge with variants of concern (VOCs) including Delta, Omicron BA.1, BA.2.12.1 and BA.5. Vaccinated animals show significant reduction in both tissue viral loads and lung inflammation. Similarly attenuated viruses bearing BA.1 and BA.5 spike boost variant-specific neutralizing antibodies in male mice that were first vaccinated with modified vaccinia virus Ankara vectors (MVA) expressing full-length WA1/2020 Spike protein. Together, these results demonstrate that our attenuated virus may be a promising nasal vaccine candidate for boosting mucosal immunity against future SARS-CoV-2 VOCs.


Assuntos
COVID-19 , Masculino , Cricetinae , Animais , Camundongos , COVID-19/prevenção & controle , Mesocricetus , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais
3.
Influenza Other Respir Viruses ; 17(5): e13152, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37246149

RESUMO

BACKGROUND: Highly pathogenic avian H5 influenza viruses have spread and diversified genetically and antigenically into multiple clades and subclades. Most isolates of currently circulating H5 viruses are in clade 2.3.2.1 or 2.3.4.4. METHODS: Panels of murine monoclonal antibodies (mAbs) were generated to the influenza hemagglutinin (HA) of H5 viruses from the clade 2.3.2.1 H5N1 vaccine virus A/duck/Bangladesh/19097/2013 and the clade 2.3.4.4 H5N8 vaccine virus A/gyrfalcon/Washington/41088-6/2014. Antibodies were selected and characterized for binding, neutralization, epitope recognition, cross-reactivity with other H5 viruses, and the ability to provide protection in passive transfer experiments. RESULTS: All mAbs bound homologous HA in an ELISA format; mAbs 5C2 and 6H6 were broadly binding for other H5 HAs. Potently neutralizing mAbs were identified in each panel, and all neutralizing mAbs provided protection in passive transfer experiments in mice challenged with a homologous clade influenza virus. Cross-reacting mAb 5C2 neutralized a wide variety of clade 2.3.2.1 viruses, as well as H5 viruses from other clades, and also provided protection against heterologous H5 clade influenza virus challenge. Epitope analysis indicated that the majority of mAbs recognized epitopes in the globular head of the HA. The mAb 5C2 appeared to recognize an epitope below the globular head but above the stalk region of HA. CONCLUSIONS: The results suggested that these H5 mAbs would be useful for virus and vaccine characterization. The results confirmed the functional cross-reactivity of mAb 5C2, which appears to bind a novel epitope, and suggest the therapeutic potential for H5 infections in humans with further development.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Hemaglutininas , Anticorpos Antivirais , Testes de Neutralização , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Epitopos/química , Camundongos Endogâmicos BALB C
4.
J Med Virol ; 95(3): e28673, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916782

RESUMO

Broadly neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are sought to curb coronavirus disease 2019 (COVID-19) infections. Here we produced and characterized a set of mouse monoclonal antibodies (mAbs) specific for the ancestral SARS-CoV-2 receptor binding domain (RBD). Two of them, 17A7 and 17B10, were highly potent in microneutralization assay with 50% inhibitory concentration (IC50 ) ≤135 ng/mL against infectious SARS-CoV-2 variants, including G614, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Kappa, Lambda, B.1.1.298, B.1.222, B.1.5, and R.1. Both mAbs (especially 17A7) also exhibited strong in vivo efficacy in protecting K18-hACE2 transgenic mice from the lethal infection with G614, Alpha, Beta, Gamma, and Delta viruses. Structural analysis indicated that 17A7 and 17B10 target the tip of the receptor binding motif in the RBD-up conformation. A third RBD-reactive mAb (3A6) although escaped by Beta and Gamma, was highly effective in cross-neutralizing Delta and Omicron BA.1 variants in vitro and in vivo. In competition experiments, antibodies targeting epitopes similar to these 3 mAbs were rarely enriched in human COVID-19 convalescent sera or postvaccination sera. These results are helpful to inform new antibody/vaccine design and these mAbs can be useful tools for characterizing SARS-CoV-2 variants and elicited antibody responses.


Assuntos
Anticorpos Monoclonais , COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Soroterapia para COVID-19 , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais , Anticorpos Neutralizantes , Testes de Neutralização
5.
Nat Commun ; 13(1): 6792, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357440

RESUMO

Few live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are in pre-clinical or clinical development. We seek to attenuate SARS-CoV-2 (isolate WA1/2020) by removing the polybasic insert within the spike protein and the open reading frames (ORFs) 6-8, and by introducing mutations that abolish non-structural protein 1 (Nsp1)-mediated toxicity. The derived virus (WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A) replicates to 100- to 1000-fold-lower titers than the ancestral virus and induces little lung pathology in both K18-human ACE2 (hACE2) transgenic mice and Syrian hamsters. Immunofluorescence and transcriptomic analyses of infected hamsters confirm that three-pronged genetic modifications attenuate the proinflammatory pathways more than the removal of the polybasic cleavage site alone. Finally, intranasal administration of just 100 PFU of the WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A elicits robust antibody responses in Syrian hamsters and protects against SARS-CoV-2-induced weight loss and pneumonia. As a proof-of-concept study, we demonstrate that live but sufficiently attenuated SARS-CoV-2 vaccines may be attainable by rational design.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Camundongos , Animais , Humanos , SARS-CoV-2/genética , Mesocricetus , Formação de Anticorpos , Administração Intranasal , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Pulmão/patologia , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética
6.
J Virol ; 96(18): e0116621, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069549

RESUMO

Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.


Assuntos
Aminoácidos , Ebolavirus , Epitopos de Linfócito T , Glicoproteínas , Doença pelo Vírus Ebola , Aminoácidos/metabolismo , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Ebola/genética , Ebolavirus/genética , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Camundongos , Proteínas Recombinantes , Vírus Vaccinia , Vesiculovirus
7.
Front Immunol ; 13: 909297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784305

RESUMO

Current vaccination strategies against influenza focus on generating an antibody response against the viral haemagglutination surface protein, however there is increasing interest in neuraminidase (NA) as a target for vaccine development. A critical tool for development of vaccines that target NA or include an NA component is available validated serology assays for quantifying anti-NA antibodies. Additionally serology assays have a critical role in defining correlates of protection in vaccine development and licensure. Standardisation of these assays is important for consistent and accurate results. In this study we first validated a harmonized enzyme-linked lectin assay (ELLA)- Neuraminidase Inhibition (NI) SOP for N1 influenza antigen and demonstrated the assay was precise, linear, specific and robust within classical acceptance criteria for neutralization assays for vaccine testing. Secondly we tested this SOP with NA from influenza B viruses and showed the assay performed consistently with both influenza A and B antigens. Third, we demonstrated that recombinant NA (rNA) could be used as a source of antigen in ELLA-NI. In addition to validating a harmonized SOP we finally demonstrated a clear improvement in inter-laboratory agreement across several studies by using a calibrator. Importantly we showed that the use of a calibrator significantly improved agreement when using different sources of antigen in ELLA-NI, namely reverse genetics viruses and recombinant NA. We provide a freely available and detailed harmonized SOP for ELLA-NI. Our results add to the growing body of evidence in support of developing biological standards for influenza serology.


Assuntos
Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Humanos , Lectinas/metabolismo , Neuraminidase/genética , Reprodutibilidade dos Testes , Genética Reversa
8.
NPJ Vaccines ; 6(1): 145, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862398

RESUMO

Numerous vaccine candidates against SARS-CoV-2, the causative agent of the COVID-19 pandemic, are under development. The majority of vaccine candidates to date are designed to induce immune responses against the viral spike (S) protein, although different forms of S antigen have been incorporated. To evaluate the yield and immunogenicity of different forms of S, we constructed modified vaccinia virus Ankara (MVA) vectors expressing full-length S (MVA-S), the RBD, and soluble S ectodomain and tested their immunogenicity in dose-ranging studies in mice. All three MVA vectors induced spike-specific immunoglobulin G after one subcutaneous immunization and serum titers were boosted following a second immunization. The MVA-S and MVA-ssM elicited the strongest neutralizing antibody responses. In assessing protective efficacy, MVA-S-immunized adult Syrian hamsters were challenged with SARS-CoV-2 (USA/WA1/2020). MVA-S-vaccinated hamsters exhibited less severe manifestations of atypical pneumocyte hyperplasia, hemorrhage, vasculitis, and especially consolidation, compared to control animals. They also displayed significant reductions in gross pathology scores and weight loss, and a moderate reduction in virus shedding was observed post challenge in nasal washes. There was evidence of reduced viral replication by in situ hybridization, although the reduction in viral RNA levels in lungs and nasal turbinates did not reach significance. Taken together, the data indicate that immunization with two doses of an MVA vector expressing SARS-CoV-2 S provides protection against a stringent SARS-CoV-2 challenge of adult Syrian hamsters, reaffirm the utility of this animal model for evaluating candidate SARS-CoV-2 vaccines, and demonstrate the value of an MVA platform in facilitating vaccine development against SARS-CoV-2.

9.
NPJ Vaccines ; 6(1): 30, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637737

RESUMO

Avian influenza A(H7N9) epidemics have a fatality rate of approximately 40%. Previous studies reported that low pathogenic avian influenza (LPAI)-derived candidate vaccine viruses (CVVs) are poorly immunogenic. Here, we assess the immunogenicity and efficacy of a highly pathogenic avian influenza (HPAI) A/Guangdong/17SF003/2016 (GD/16)-extracted hemagglutinin (eHA) vaccine. GD/16 eHA induces robust H7-specific antibody responses in mice with a marked adjuvant antigen-sparing effect. Mice immunized with adjuvanted GD/16 eHA are protected from the lethal LPAI and HPAI H7N9 challenges, in stark contrast to low antibody titers and high mortality in mice receiving adjuvanted LPAI H7 eHAs. The protection correlates well with the magnitude of the H7-specific antibody response (IgG and microneutralization) or HA group 2 stem-specific IgG. Inclusion of adjuvanted GD/16 eHA in heterologous prime-boost improves the immunogenicity and protection of LPAI H7 HAs in mice. Our findings support the inclusion of GD/16-derived CVV in the pandemic preparedness vaccine stockpile.

10.
Vaccines (Basel) ; 8(1)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204367

RESUMO

The modified vaccinia virus Ankara (MVA), a severely attenuated strain of vaccinia virus, is a promising vector platform for viral-vectored vaccine development because of its attributes of efficient transgene expression and safety profile, among others. Thus, transgene stability in MVA is important to assure immunogenicity and efficacy. The global GC content of the MVA genome is 33%, and GC-rich sequences containing runs of C or G nucleotides have been reported to be less stable with passage of MVA vectors in cells. The production of recombinant MVA vaccines requires a number of expansion steps in cell culture, depending on production scale. We assessed the effect of extensive passage of four recombinant MVA vectors on the stability of the GC-rich herpes simplex type 2 (HSV-2) US6 gene encoding viral glycoprotein D (gD2) inserted at four different genomic sites, including the deletion (del) II and del III sites, the CP77 gene locus (MVA_009-MVA_013) and the I8R-G1L intergenic region. Our data indicate that after 35 passages, there was a reduction in gD2 expression from del II, del III and CP77 sites. Sequencing analysis implicated US6 deletion and mutational events as responsible for the loss of gD2 expression. By contrast, 85.9% of recombinant plaques expressed gD2 from the I8R-G1L site, suggesting better accommodation of transgenes in this intergenic region. Thus, the I8R-G1L intergenic region may be more useful for transgene insertion for enhanced stability.

11.
Influenza Other Respir Viruses ; 14(2): 237-243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837101

RESUMO

BACKGROUND: This report summarizes the discussions and conclusions from the "Immunological Assays and Correlates of Protection for Next-Generation Influenza Vaccines" meeting which took place in Siena, Italy, from March 31, 2019, to April 2, 2019. CONCLUSIONS: Furthermore, we review current correlates of protection against influenza virus infection and disease and their usefulness for the development of next generation broadly protective and universal influenza virus vaccines.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade nas Mucosas , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/biossíntese , Influenza Humana/prevenção & controle , Modelos Animais , Neuraminidase/sangue , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Testes Sorológicos/métodos , Vacinação
12.
PLoS One ; 14(9): e0222436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513662

RESUMO

Vaccines that elicit broadly cross-neutralizing antibodies, including antibodies that target the conserved stem of hemagglutinin (HA), are being developed as a strategy for next-generation influenza vaccines that protect against influenza across multiple years. However, efficient induction of cross-neutralizing antibodies remains a challenge, and potential escape mutations have not been well characterized. Here we elicited cross-neutralizing antibodies by immunizing animals with the hemagglutinins from H5 and H9 subtype influenza A viruses that are sensitive to neutralization by stem antibodies. We further isolated and characterized an HA stem monoclonal antibody 4C2 that broadly neutralizes group 1 influenza viruses and identified HA mutations that reduced sensitivity to stem antibodies. Our results offer insights for next-generation influenza vaccine strategies for inducing cross-neutralizing antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas , Humanos , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/prevenção & controle , Camundongos , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia
13.
Sci Rep ; 8(1): 5364, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599502

RESUMO

Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages - A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H7N3/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/imunologia , Vírus Vaccinia/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , China/epidemiologia , Proteção Cruzada , Humanos , Imunogenicidade da Vacina , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Vacinação/métodos
14.
Influenza Other Respir Viruses ; 12(2): 195-201, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356318

RESUMO

The single radial immunodiffusion assay has been the accepted method for determining the potency of inactivated influenza vaccines since 1978. The worldwide adoption of this assay for vaccine standardisation was facilitated through collaborative studies that demonstrated a high level of reproducibility and its applicability to the different types of influenza vaccine being produced at that time. Clinical evidence indicated the relevance of SRID as a potency assay. Unique features of the SRID assay are likely responsible for its longevity even as newer technologies for vaccine characterisation have been developed and refined. Nevertheless, there are significant limitations to the SRID assay that indicate the need for improvement, and there has been a substantial amount of work undertaken in recent years to develop and evaluate alternative potency assays, including collaborative studies involving research laboratories, regulatory agencies and vaccine manufacturers. Here, we provide an overview of the history of inactivated influenza vaccine potency testing, the current state of alternative assay development and the some of the major challenges to be overcome before implementation of new assays for potency determination.


Assuntos
Vacinas contra Influenza/normas , Tecnologia Farmacêutica/métodos , Potência de Vacina , História do Século XX , História do Século XXI , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tecnologia Farmacêutica/história
15.
Influenza Other Respir Viruses ; 12(2): 250-258, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29152878

RESUMO

BACKGROUND: The single radial immunodiffusion (SRID) assay, the accepted method for determining potency of inactivated influenza vaccines, measures an immunogenic form of the influenza hemagglutinin. Nevertheless, alternative methods for measuring vaccine potency have been explored to address some of the weaknesses of the SRID assay, including limited sensitivity and the requirement for large amounts of standardized reagents. Monoclonal antibody (mAb)-based potency assays also have the ability to detect and measure relevant immunogenic forms of HA. OBJECTIVES: The objective of this study was to continue evaluation of mAb-based alternative methods for measuring the potency of inactivated influenza vaccines, focusing on A(H7N9) pandemic influenza vaccines. METHODS: Several murine mAbs that recognize different epitopes on the H7 hemagglutinin (HA) were identified and characterized. These mAbs were evaluated in both a mAb-capture ELISA and a mAb-based biolayer interferometry (BLI) assay. RESULTS: Results indicated that potency of inactivated A(H7N9) vaccines, including vaccine samples that were stressed by heat treatment, measured by either alternative method correlated well with potency determined by the traditional SRID potency assay. CONCLUSIONS: The availability of multiple H7 mAbs, directed to different HA epitopes, provides needed redundancy in the potency analysis as A(H7N9) viruses continue to evolve antigenically and suggests the importance of having a broad, well-characterized panel of mAbs available for development of vaccines against influenza strains with pandemic potential. In addition, the results highlight the potential of mAb-based platform such as ELISA and BLI for development as alternative methods for determining the potency of inactivated influenza vaccines.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Vacinas contra Influenza/imunologia , Interferometria/métodos , Tecnologia Farmacêutica/métodos , Potência de Vacina , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Fatores Imunológicos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Sensibilidade e Especificidade , Vacinas de Produtos Inativados/imunologia
16.
PLoS One ; 12(4): e0175733, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423025

RESUMO

Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Imunogenicidade da Vacina , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/análise , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Antígenos Virais/química , Galinhas , Cães , Ensaio de Imunoadsorção Enzimática/métodos , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Imunodifusão/métodos , Vírus da Influenza B/imunologia , Vacinas contra Influenza/biossíntese , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Camundongos , Ligação Proteica , Vacinas de Produtos Inativados , Vacinas de Subunidades , Zigoto/virologia
17.
Influenza Other Respir Viruses ; 10(5): 354-60, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27426005

RESUMO

Influenza virus vaccines are unique among currently licensed viral vaccines. The vaccines designed to protect against seasonal influenza illness must be updated periodically in an effort to match the vaccine strain with currently circulating viruses, and the vaccine manufacturing timeline includes multiple, overlapping processes with a very limited amount of flexibility. In the United States (U.S.), over 150 million doses of seasonal trivalent and quadrivalent vaccine are produced annually, a mammoth effort, particularly in the context of a vaccine with components that usually change on a yearly basis. In addition, emergence of an influenza virus containing an HA subtype that has not recently circulated in humans is an ever present possibility. Recently, pandemic influenza vaccines have been licensed, and the pathways for licensure of pandemic vaccines and subsequent strain updating have been defined. Thus, there are formidable challenges for the regulation of currently licensed influenza vaccines, as well as for the regulation of influenza vaccines under development. This review describes the process of licensing influenza vaccines in the U.S., the process and steps involved in the annual updating of seasonal influenza vaccines, and some recent experiences and regulatory challenges faced in development and evaluation of novel influenza vaccines.


Assuntos
Aprovação de Drogas , Vacinas contra Influenza , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Estações do Ano , Estados Unidos , United States Food and Drug Administration , Vacinação
18.
PLoS One ; 11(2): e0149149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26862918

RESUMO

Human infections with H7 subtype influenza virus have been reported, including an H7N7 outbreak in Netherlands in 2003 and H7N9 infections in China in 2013. Previously, we reported murine monoclonal antibodies (mAbs) that recognize the antigenic site A of H7 hemagglutinin (HA). To better understand protective immunity of H7 vaccines and vaccine candidate selection, we used these mAbs to assess the antigenic relatedness among two H7 HA isolated from past human infections and determine residues that affect susceptibility to neutralization. We found that these mAbs neutralize pseudoviruses bearing HA of A/Shanghai/02/2013(H7N9), but not A/Netherlands/219/2003(H7N7). Glycosylation of the asparagine residue at position 141 (N141) (N133, H3 HA numbering) in the HA of A/Netherlands/219/2003 HA is responsible for this resistance, and it affects the infectivity of HA-pseudoviruses. The presence of threonine at position 143 (T135, H3 HA numbering) in the HA of A/Netherlands/219/2003, rather than an alanine found in the HA of A/Shanghai/02/2013(H7N9), accounts for these differences. These results demonstrate a key role for glycosylation of residue N141 in affecting H7 influenza HA-mediated entry and sensitivity to neutralizing antibodies, which have implications for candidate vaccine design.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H7N7/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Glicosilação , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H7N7/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Testes de Neutralização , Fases de Leitura Aberta , Plasmídeos/metabolismo
19.
PLoS One ; 11(2): e0149364, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895072

RESUMO

The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.


Assuntos
Vetores Genéticos/administração & dosagem , Vacinação , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Vetores Genéticos/genética , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 2/imunologia , Imunoglobulina G/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos , Vacinas de DNA , Vaccinia/metabolismo , Vaccinia/prevenção & controle , Vírus Vaccinia/genética , Vírus Vaccinia/imunologia , Vacinas Virais/genética
20.
Influenza Other Respir Viruses ; 10(2): 134-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26616263

RESUMO

BACKGROUND: The potency of inactivated influenza vaccines is determined using a single-radial immunodiffusion (SRID) assay and requires standardized reagents consisting of a Reference Antigen and an influenza strain-specific antiserum. Timely availability of reagents is a critical step in influenza vaccine production, and the need for backup approaches for reagent preparation is an important component of pandemic preparedness. OBJECTIVES: When novel H7N9 viruses emerged in China in 2013, candidate inactivated H7N9 influenza vaccines were developed for evaluation in clinical trials, and reagents were needed to measure vaccine potency. METHODS: We previously described an alternative approach for generating strain-specific potency antisera, utilizing modified vaccinia virus Ankara vectors to produce influenza hemagglutinin (HA)-containing virus-like particles (VLPs) for immunization. Vector-produced HA antigen is not dependent upon the success of the traditional bromelain-digestion and HA purification. RESULTS: Antiserum for H7N9 vaccines, produced after immunization of sheep with preparations of bromelain-HA (br-HA), was not optimal for the SRID assay, and the supply of antiserum was limited. However, antiserum obtained from sheep boosted with VLPs containing H7 HA greatly improved the ring quality in the SRID assay. Importantly, this antiserum worked well with both egg- and cell-derived antigen and was distributed to vaccine manufacturers. CONCLUSIONS: Utilizing a previously developed approach for preparing vaccine potency antiserum, we have addressed a major bottleneck encountered in preparation of H7N9 vaccine reagents. The combination of br-HA and mammalian VLPs for sequential immunization represents the first use of an alternative approach for producing an influenza vaccine potency antiserum.


Assuntos
Anticorpos Antivirais/biossíntese , Soros Imunes/biossíntese , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Potência de Vacina , Vacinas de Produtos Inativados/imunologia , Animais , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunodifusão , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Vacinas contra Influenza/normas , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pandemias/prevenção & controle , Ovinos , Vacinas de Produtos Inativados/normas , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA